Skip to main content

Overview

Rubric supports evaluation of medical imaging AI, including X-ray analysis, CT interpretation, MRI findings, and ultrasound assessments. Our platform integrates with PACS systems and supports standard DICOM formats.

Supported Modalities

X-Ray (CR/DX)

Chest, skeletal, dental radiographs

CT

Cross-sectional imaging, 3D reconstruction

MRI

Soft tissue, neurological, cardiac

Ultrasound

Obstetric, abdominal, cardiac echo

Mammography

Screening and diagnostic breast imaging

Nuclear Medicine

PET, SPECT, bone scans

PACS Integration

Connect Rubric to your PACS for seamless study retrieval:
# Configure PACS connection (one-time setup)
client.connections.create(
    type="dicomweb",
    name="Main PACS",
    config={
        "base_url": "https://pacs.hospital.org/dicom-web",
        "auth_type": "oauth2",
        "client_id": "rubric_integration"
    }
)

Supported Standards

ProtocolDescription
DICOMwebRESTful DICOM services (WADO-RS, STOW-RS, QIDO-RS)
DIMSETraditional DICOM networking (C-FIND, C-MOVE, C-STORE)
Cloud PACSGoogle Cloud Healthcare, AWS HealthLake, Azure DICOM

Logging Imaging AI Output

client.imaging.log(
    project="chest-xray-analyzer",
    
    # Study reference (from PACS)
    study_uid="1.2.840.113619.2.55.3.123456789",
    
    # Or provide image directly
    # image_url="https://storage.example.com/dicom/study.dcm",
    
    # DICOM metadata
    dicom_metadata={
        "modality": "CR",
        "body_part": "CHEST",
        "view_position": "PA",
        "patient_age": "67Y",
        "study_date": "2024-03-15"
    },
    
    # AI analysis output
    ai_analysis={
        "findings": [
            {
                "type": "cardiomegaly",
                "present": True,
                "confidence": 0.87,
                "severity": "mild",
                "location": {
                    "coordinates": [820, 680, 1380, 1420],
                    "reference": "pixel"
                }
            },
            {
                "type": "opacity",
                "present": True,
                "confidence": 0.72,
                "location_text": "left lower lobe",
                "location": {
                    "coordinates": [1240, 1560, 1480, 1820],
                    "reference": "pixel"
                }
            }
        ],
        "measurements": {
            "cardiothoracic_ratio": 0.55
        },
        "impression": "Mild cardiomegaly. Subtle LLL opacity - recommend correlation.",
        "triage_recommendation": "semi_urgent"
    },
    
    # Ground truth (if available)
    expected={
        "findings": [
            {"type": "cardiomegaly", "present": True},
            {"type": "pneumonia", "present": True, "location": "left_lower_lobe"}
        ],
        "radiologist_read": "Mild cardiomegaly. LLL pneumonia."
    }
)

Imaging Evaluators

Finding Accuracy

Measures whether the AI correctly identified abnormalities:
{
    "type": "finding_accuracy",
    "config": {
        "finding_types": ["cardiomegaly", "pneumonia", "fracture", "nodule"],
        "sensitivity_threshold": 0.90,
        "specificity_threshold": 0.85
    }
}
Metrics calculated:
  • Sensitivity (recall) per finding type
  • Specificity per finding type
  • Positive predictive value
  • Negative predictive value
  • AUC-ROC

Localization Accuracy

For AI that provides bounding boxes or segmentation:
{
    "type": "localization_accuracy",
    "config": {
        "iou_threshold": 0.5,  # Intersection over Union
        "distance_threshold_mm": 10  # For point annotations
    }
}

Report Quality

Evaluates the generated radiology report:
{
    "type": "report_quality",
    "config": {
        "check_completeness": True,
        "check_terminology": True,
        "check_structure": True,
        "required_sections": ["findings", "impression"]
    }
}

Critical Finding Alerts

Configure alerts for findings requiring immediate action:
{
    "type": "critical_finding_detection",
    "config": {
        "critical_findings": [
            "pneumothorax",
            "aortic_dissection",
            "stroke",
            "pulmonary_embolism",
            "ruptured_aaa"
        ],
        "alert_threshold": 0.7,
        "require_human_review": True
    }
}
Critical findings should always trigger immediate human review, regardless of AI confidence score.

Anatomical Coordinates

Rubric supports multiple coordinate systems:
SystemDescriptionUse Case
PixelRaw image coordinates2D analysis
PatientDICOM patient coordinate system3D localization
ICSImage coordinate systemCross-modality
{
  "location": {
    "coordinates": [120.5, 45.2, -180.0],
    "reference": "patient",
    "anatomical_region": "right_upper_lobe"
  }
}

DICOM SR Integration

For AI that outputs structured reports (DICOM SR):
client.imaging.log(
    study_uid="1.2.3.4.5",
    
    # AI output as DICOM SR
    ai_analysis_sr_url="https://storage.example.com/sr.dcm",
    
    # Or provide SR content
    ai_analysis_sr={
        "template_id": "1.2.840.10008.5.1.4.1.1.88.22",
        "content": {...}
    }
)

Next Steps